# Multiclass color-based segmentation 

April 12, 2013

| Abbreviation: | color-seg-n4/color-seg-n8 |
| :--- | :--- |
| Number of instances: | 9 |
| Number of variables: | $\sim 10^{5} \quad(360 \times 240)$ |
| Number of labels: | $4-12$ |
| Number of factors: | $\sim 2.5 \times 10^{5}(\mathrm{n} 4), \sim 4.3 \times 10^{4}(\mathrm{n} 8)$ |
| Order: | 2 |
| Function type: | Potts |

Description Segmentation of various images into 4-12 classes. The unary potentials are computed as the $\ell_{1}$-distance to prototypical class color vectors that were found using hierarchical clustering. The snail example uses statistics over user-selected regions and a weighted distance in HSV space. The synthetic fourcolors example contains a mix of round structures to test isotropy as well as straight lines in various angles with sharp junctions.


Figure 1: Multi-class color-based segmentation: Input (left), exemplary segmentation into classes corresponding to 12 different colors (right). The colors for the individual classes were pre-selected using a hierarchical clustering method.

Objective / Learning The objective function is

$$
\begin{equation*}
J(x)=\sum_{v \in V} \varphi_{i}\left(x_{i}\right)+\sum_{i j \in E} \varphi_{i j}\left(x_{i}, x_{j}\right) \tag{1}
\end{equation*}
$$

which discretizes the continuous functional

$$
\begin{equation*}
J(u)=\int_{D}\left\|c_{u(x)}-I(x)\right\| d x+\lambda \mathcal{L}(u) \tag{2}
\end{equation*}
$$

where $u: \Omega \rightarrow\{0, \ldots, n\}$ is the label function and $\mathcal{L}(u)$ is the total boundary length. The employed norm $\|\cdot\|$ varies between instances (see above). The regularization weights $\lambda$ were set manually.

The Potts regularizer has been implemented using pairwise potentials with 4-neighborhoods (-n4) and 8-neighborhoods (n8) with the pairwise factor weight chosen optimally according to [1].

## References

[1] Y. Boykov. Computing geodesics and minimal surfaces via graph cuts. In ICCV, 2003.

