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Abbreviation: correlation-clustering
Number of instances: 715
Number of variables: ∼300
Number of labels: ∼300
Number of factors: ∼300
Order: ∼300
Function type: Potts

Description Correlation Clustering (CC) is a graph-
partitioning algorithm that infers the edge labels of the graph
by simultaneously maximizing intra-cluster similarity and
inter-cluster dissimilarity by optimization of a global objective
function. In order to capture long-range dependencies of distant
nodes in a global context, [4] proposes higher-order CC to
incorporate higher-order relations over hyper-graph, and the
CC was shown to be effective in image segmentation [4]. For
this image segmentation, [4] defined the CC problem over a
superpixel-based hyper-graph in which an edge referred to as
hyperedge can connect to two or more nodes (superpixels).
For example, as shown in Figure 1, one can introduce binary
labels for each adjacent vertices forming a triplet such that
𝑥𝑖𝑗𝑘 = 1 if all vertices in {𝑖, 𝑗, 𝑘} are in the same cluster;
otherwise, 𝑥𝑖𝑗𝑘 = 0. Define a hyper-graph ℋ𝒢 = (𝒱, ℰ)
where 𝒱 is the set of all nodes (superpixels) and ℰ is the set
of all hyperedges (subsets of 𝒱) such that

⋃︀
𝑒∈ℰ = 𝒱 . Here,

a hyperedge 𝑒 has at least two nodes, i.e. |𝑒| ≥ 2. Therefore,
the hyperedge set ℰ can be divided into two disjoint subsets:
pairwise edge set ℰ𝑝 = {𝑒 ∈ ℰ | |𝑒| = 2} and higher-order
edge set ℰℎ = {𝑒 ∈ ℰ | |𝑒| > 2} such that ℰ𝑝

⋃︀
ℰℎ = ℰ .

Figure 1: Illustration of a part of the triplet graph built on
superpixels.

In this paper, we perform CC for image segmentation on the
Stanford background dataset [3] (SBD). The SBD consists of
715 outdoor images with corresponding pixel-wise annotations
such that each pixel is labeled with either one of 7 background
classes or a generic foreground class. From the given pixel-wise
ground-truth annotations, we obtain a ground-truth segmenta-
tion for each image. From a given image, a hyper-graph is con-
structed as follows. First, unsupervised multiple partitionings

are obtained by merging not pixels but superpixels with differ-
ent image quantizations using the ultrametric contour maps [1].
Then, the obtained regions are used to define hyperedges of the
hyper-graph.

Objective / Learning The CC can be formulated as a linear
objective function which allows for approximate polynomial-
time inference by linear programming. An image segmentation
is to infer the hyperedge label, �̂�, over the hyper-graph ℋ𝒢 by
minimizing 𝐽 such that

�̂� = argmin
𝑥∈𝑋(ℋ𝒢)

𝐽(𝑥) (1)

= argmin
𝑥∈𝑋(ℋ𝒢)

∑︁
𝑒∈ℰ

𝜙𝑒(𝑥𝑒) (2)

= argmin
𝑥∈𝑋(ℋ𝒢)

∑︁
𝑒∈ℰ

⟨𝑤, 𝜑𝑒⟩𝑥𝑒 (3)

= argmin
𝑥∈𝑋(ℋ𝒢)

∑︁
𝑒𝑝∈ℰ𝑝

⟨𝑤𝑝, 𝜑𝑒𝑝⟩𝑥𝑒𝑝 +
∑︁

𝑒ℎ∈ℰℎ

⟨𝑤ℎ, 𝜑𝑒ℎ⟩𝑥𝑒ℎ (4)

where 𝑋(ℋ𝒢) is the set of {0, 1}ℰ that corresponds to a valid
segmentation and the homogeneity measure among nodes in 𝑒,
𝜙𝑒, is the inner product of the weight vector 𝑤 = [𝑤𝑝;𝑤ℎ] and
the feature vector 𝜑𝑒 and takes values of both signs such that a
large negative value indicates strong homogeneity while a large
positive value indicates high degree of non-homogeneity. Here,
we construct a 771-dimensional feature vector 𝜑𝑒 = [𝜑𝑒𝑝 ;𝜑𝑒ℎ ]
by concatenating several visual cues with different quantization
levels and thresholds and estimate 𝑤 by structured support vec-
tor machine [4]. The relaxed polytope to approximately solve
(1) by linear programming is defined by the following three
inequalities.

1. Cycle inequality: Let Path(𝑗, 𝑘) be the set of paths between
nodes 𝑗 and 𝑘. The cycle inequality is a generalization of
the triangle inequality [2] and is defined as

(1− 𝑥𝑗𝑘) ≤
∑︁

(𝑠,𝑡)∈𝑝

(1− 𝑥𝑠𝑡), 𝑝 ∈ Path(𝑗, 𝑘). (5)

2. Odd-wheel inequality: Let a 𝑞-wheel be a connected sub-
graph 𝒮 = (𝒱𝑠, ℰ𝑠) with a central vertex 𝑗 ∈ 𝒱𝑠 and a cycle
of 𝑞 vertices in 𝒞 = 𝒱𝑠 ∖ {𝑗}. For every odd 𝑞(≥ 3)-wheel,
a valid segmentation 𝑥 satisfies∑︁

(𝑠,𝑡)∈ℰ(𝒞)

(1− 𝑥𝑠𝑡)−
∑︁
𝑘∈𝒞

(1− 𝑥𝑗𝑘) ≤ ⌊1
2
𝑞⌋, (6)

where ℰ(𝒞) denotes the set of all edges in the outer cycle
𝒞.
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3. Higher-order inequality:

𝑥𝑒ℎ ≤ 𝑥𝑒𝑝 , ∀𝑒𝑝 ∈ ℰ𝑝|𝑒𝑝 ⊂ 𝑒ℎ, (7)

(1− 𝑦𝑒ℎ) ≤
∑︁

𝑒𝑝∈ℰ𝑝|𝑒𝑝⊂𝑒ℎ

(1− 𝑥𝑒𝑝).

The higher-order inequalities reflect valid relations between
higher-order edge labels and pairwise edge labels.
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