opengm::AbsoluteDifferenceFunction< T, I, L > | Absolute difference between two labels |
opengm::Adder | Addition as a binary operation |
opengm::ADSal< GM, ACC > | [class adsal] ADSal - adaptive diminishing smoothing algorithm Based on the paper: B. Savchynskyy, S. Schmidt, J. H. Kappes, C. Schnörr Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing, In UAI, 2012, pp. 746-755 |
opengm::ADSal_Parameter< ValueType, GM > | |
opengm::detail_properties::AllValuesInAnyOrderFunctionProperties< FUNCTION, ACCUMULATOR > | |
opengm::AlphaBetaSwap< GM, INF > | Alpha-Beta-Swap Algorithm |
opengm::AlphaExpansion< GM, INF > | Alpha-Expansion Algorithm |
opengm::AlphaExpansionFusion< GM, ACC > | Alpha-Expansion-Fusion Algorithm uses the code of Alexander Fix to reduce the higer order moves to binary pairwise problems which are solved by QPBO as described in Alexander Fix, Artinan Gruber, Endre Boros, Ramin Zabih: A Graph Cut Algorithm for Higher Order Markov Random Fields, ICCV 2011 |
opengm::And | Conjunction as a binary operation |
opengm::AStar< GM, ACC > | A star search algorithm |
opengm::detail_properties::AtLeastAllUniqueValuesFunctionProperties< FUNCTION, ACCUMULATOR > | |
opengm::BeliefPropagationUpdateRules< GM, ACC, BUFFER > | Update rules for the MessagePassing framework |
binary_function | |
opengm::BinaryFunctionProperties< BinaryProperties::IsPotts, FUNCTION > | |
opengm::BinaryProperties | |
opengm::Bruteforce< GM, ACC > | Brute force inference algorithm |
TransportSolver::List2D< T >::bufferElement | |
opengm::BufferRandomAccessSet< T > | |
trws_base::compToValue< T, ACC > | |
opengm::ConstantFunction< T, I, L > | Constant function |
opengm::ConvertToExplicit< GM > | Convert any graphical model into an explicit graphical model |
TransportSolver::coordLess< E > | |
TransportSolver::coordMore< E > | |
trws_base::Decomposition< GM > | |
trws_base::DecompositionStorage< GM > | |
opengm::DiscreteSpace< I, L > | Discrete space in which variables can have differently many labels |
opengm::disjoint_set< T > | |
opengm::DualDecompositionBase< GM, DUALBLOCK > | A framework for inference algorithms based on Lagrangian decomposition |
opengm::DualDecompositionBaseParameter | |
opengm::DualDecompositionEmptyVisitor< DD > | Visitor |
opengm::DualDecompositionSubGradient< GM, INF, DUALBLOCK > | Inference based on dual decomposition using sub-gradient descent |
opengm::DualDecompositionVisitor< DD > | Visitor |
trws_base::DynamicProgramming< GM, ACC, InputIterator > | |
opengm::DynamicProgramming< GM, ACC > | DynamicProgramming |
opengm::DynamicSingleSiteFunction< T > | Single site function with dynamic size |
opengm::disjoint_set< T >::elem | |
opengm::ExplicitFunction< T, I, L > | Function encoded as a dense multi-dimensional array, marray::Marray |
opengm::ExplicitStorage< GM > | ExplicitStorage (continous storage) of a graphical model function data |
opengm::Factor< GRAPHICAL_MODEL > | Abstraction (wrapper class) of factors, independent of the function used to implement the factor |
opengm::FactorGraph< S, I > | Interface that makes an object of type S (the template parameter) look like a (non-editable) factor graph |
trws_base::PreviousFactorTable< GM >::FactorVarID | |
trws_base::FactorWrapper< FACTOR > | |
opengm::FastSequence< T, MAX_STACK > | Vector that stores values on the stack if size is smaller than MAX_STACK |
opengm::FunctionBase< FUNCTION, VALUE, INDEX, LABEL > | Fallback implementation of member functions of OpenGM functions |
opengm::FunctionIteratation< IX, DX, false > | |
opengm::FunctionIteratation< IX, DX, true > | |
trws_base::FunctionParameters< GM > | |
opengm::Gibbs< GM, ACC > | Gibbs sampling |
opengm::GibbsMarginalVisitor< GIBBS > | Visitor for the Gibbs sampler to compute arbitrary marginal probabilities |
opengm::GraphCut< GM, ACC, MINSTCUT > | A framework for min st-cut algorithms |
opengm::GraphicalModel< T, OPERATOR, FUNCTION_TYPE_LIST, SPACE, EDITABLE > | GraphicalModel |
GraphicalModelEdit | |
trws_base::GridDecomposition< GM > | |
opengm::ICM< GM, ACC > | Iterated Conditional Modes Algorithm
J. E. Besag, "On the Statistical Analysis of Dirty Pictures", Journal of the Royal Statistical Society, Series B 48(3):259-302, 1986 |
opengm::IndependentFactor< T, I, L > | Factor (with corresponding function and variable indices), independent of a GraphicalModel |
opengm::InfAndFlip< GM, ACC, INF > | Inference and Flip
|
opengm::Inference< GM, ACC > | Inference algorithm interface |
marray::InitializationSkipping | |
opengm::Integrator | Integration (addition) as a unary accumulation |
marray::Iterator< T, isConst, A > | STL-compliant random access iterator for View and Marray |
TransportSolver::List2D< T >::iterator_template< Parent, typeT > | |
opengm::LazyFlipper< GM, ACC > | A generalization of ICM
B. Andres, J. H. Kappes, U. Koethe and Hamprecht F. A., The Lazy Flipper: MAP Inference in Higher-Order Graphical Models by Depth-limited Exhaustive Search, Technical Report, 2010, http://arxiv.org/abs/1009.4102 |
TransportSolver::List2D< T > | |
TransportSolver::List2D< T >::listElement | |
opengm::LOC< GM, ACC > | LOC Algorithm
K. Jung, P. Kohli and D. Shah, "Local Rules for Global MAP: When Do They Work?", NIPS 2009 |
opengm::LPCplex< GM, ACC > | Optimization by Linear Programming (LP) or Integer LP using IBM ILOG CPLEX
http://www.ilog.com/products/cplex/ |
trws_base::make0ifless< T > | |
marray::Marray< T, A > | Runtime-flexible multi-dimensional array |
marray::Matrix< T, A > | Two-dimensional Marray |
TransportSolver::MatrixWrapper< T > | |
opengm::MaxDistance | MaxDistance |
opengm::Maximizer | Maximization as a unary accumulation |
trws_base::maximum< T > | |
trws_base::MaxSumSolver< GM, ACC, InputIterator > | |
trws_base::MaxSumTRWS< GM, ACC > | |
trws_base::MaxSumTRWS_Parameters< ValueType > | |
opengm::MessagePassing< GM, ACC, UPDATE_RULES, DIST > | A framework for message passing algorithms
Cf. F. R. Kschischang, B. J. Frey and H.-A. Loeliger, "Factor Graphs and the Sum-Product Algorithm", IEEE Transactions on Information Theory 47:498-519, 2001 |
opengm::Minimizer | Minimization as a unary accumulation |
opengm::MinSTCutBoost< NType, VType, mfalg > | Boost solvers for the min st-cut framework GraphCut |
opengm::external::MinSTCutIBFS< NType, VType > | IBFS solver for the min st-cut framework GraphCut |
trws_base::minusminus< T > | |
opengm::modelTrees< GM > | |
opengm::ModelViewFunction< GM, MARRAY > | Function that refers to a factor of another GraphicalModel |
trws_base::MonotoneChainsDecomposition< GM > | |
opengm::Movemaker< GM > | A fremework for move making algorithms |
opengm::MQPBO< GM, ACC > | [class mqpbo] Multilabel QPBO (MQPBO) Implements the algorithms described in i) Ivan Kovtun: Partial Optimal Labeling Search for a NP-Hard Subclass of (max, +) Problems. DAGM-Symposium 2003 (part. opt. for potts) ii) P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr: On partial optimality in multi-label MRFs, ICML 2008 (MQPBO) iii) P. Swoboda, B. Savchynskyy, J.H. Kappes, and C. Schnörr : Partial Optimality via Iterative Pruning for the Potts Model, SSVM 2013 (MQPBO with permutation sampling) |
trws_base::mul2ndPlus< T > | |
trws_base::mulAndExp< T > | |
opengm::Multicut< GM, ACC > | Multicut Algorithm
[1] J. Kappes, M. Speth, B. Andres, G. Reinelt and C. Schnoerr, "Globally Optimal Image Partitioning by Multicuts", EMMCVPR 2011
[2] J. Kappes, M. Speth, G. Reinelt and C. Schnoerr, "Higher-order Segmentation via Multicuts", Technical Report (http://ipa.iwr.uni-heidelberg.de/ipabib/Papers/kappes-2013-multicut.pdf)
|
opengm::Multiplier | Multiplication as a binary operation |
opengm::Normalization | Normalization w.r.t. a binary operation (e.g. Multiplier) and a unary accumulation (e.g. Integrator) |
opengm::Or | Disjunction as a binary operation |
opengm::DualDecompositionSubGradient< GM, INF, DUALBLOCK >::Parameter | |
opengm::AlphaBetaSwap< GM, INF >::Parameter | |
opengm::Gibbs< GM, ACC >::Parameter | |
opengm::GraphCut< GM, ACC, MINSTCUT >::Parameter | |
opengm::ICM< GM, ACC >::Parameter | |
opengm::Bruteforce< GM, ACC >::Parameter | |
opengm::InfAndFlip< GM, ACC, INF >::Parameter | |
opengm::AStar< GM, ACC >::Parameter | |
opengm::LazyFlipper< GM, ACC >::Parameter | |
opengm::LOC< GM, ACC >::Parameter | |
opengm::LPCplex< GM, ACC >::Parameter | |
opengm::MessagePassing< GM, ACC, UPDATE_RULES, DIST >::Parameter | |
opengm::MQPBO< GM, ACC >::Parameter | |
opengm::Multicut< GM, ACC >::Parameter | |
opengm::PartitionMove< GM, ACC >::Parameter | |
opengm::QPBO< GM, MIN_ST_CUT >::Parameter | |
opengm::AlphaExpansion< GM, INF >::Parameter | |
opengm::ReducedInference< GM, ACC, INF >::Parameter | |
opengm::SAT< GM >::Parameter | |
opengm::AlphaExpansionFusion< GM, ACC >::Parameter | |
opengm::SwendsenWang< GM, ACC >::Parameter | |
opengm::DynamicProgramming< GM, ACC >::Parameter | |
Parent | |
opengm::Partition< T > | Disjoint set data structure with path compression |
opengm::PartitionMove< GM, ACC > | Partition Move
Currently Partition Move only implements the Kernighan-Lin-Algorithm |
trws_base::plus2ndMul< T > | |
trws_base::plusplusConst< T > | |
opengm::PottsFunction< T, I, L > | Potts function for two variables |
opengm::PottsGFunction< T, I, L > | Generalized Potts Function |
opengm::PottsNFunction< T, I, L > | Potts function in N variables |
trws_base::PreviousFactorTable< GM > | |
opengm::PrimalLPBound< GM, ACC > | [class primallpbound] PrimalLPBound - estimating primal local polytope bound and feasible primal solution for the local polytope relaxation of the MRF energy minimization problem Based on the paper: B. Savchynskyy, S. Schmidt Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study. arXiv:1210.4081 Submitted Oct. 2012 |
opengm::PrimalLPBound_Parameter< ValueType > | |
trws_base::Pseudo2DArray< T > | |
opengm::QPBO< GM, MIN_ST_CUT > | QPBO Algorithm
C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer, "Optimizing binary MRFs via extended roof duality", CVPR 2007 |
opengm::RandomAccessSet< Key, Compare, Alloc > | Set with O(n) insert and O(1) access |
opengm::ReducedInference< GM, ACC, INF > | [class reducedinference] Reduced Inference Implementation of the reduction techniques proposed in J.H. Kappes, M. Speth, G. Reinelt, and C. Schnörr: Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization, CVPR 2013 |
opengm::ReducedInferenceHelper< GM > | |
opengm::RuntimeError | OpenGM runtime error |
opengm::SAT< GM > | 2-SAT solver |
opengm::ScaledViewFunction< GM > | Function that scales a factor of another graphical model |
trws_base::SequenceStorage< GM > | |
opengm::SimpleDiscreteSpace< I, L > | Discrete space in which all variables have the same number of labels |
opengm::SpaceBase< SPACE, I, L > | Interface of label spaces |
opengm::SparseFunction< T, I, L, CONTAINER > | |
opengm::SquaredDifferenceFunction< T, I, L > | Squared difference of the labels of two variables |
trws_base::srcIterator< T > | |
opengm::StaticSimpleDiscreteSpace< LABELS, I, L > | Discrete space in which all variables have the same number of labels |
opengm::StaticSingleSiteFunction< T, SIZE, STORAGE > | Single site function whose size is fixed at compile time |
STORAGE | |
trws_base::SumProdSolver< GM, ACC, InputIterator > | |
trws_base::SumProdTRWS< GM, ACC > | |
trws_base::SumProdTRWS_Parameters< ValueType > | |
opengm::SwendsenWang< GM, ACC > | Generalized Swendsen-Wang sampling
A. Barbu, S. Zhu, "Generalizing swendsen-wang to sampling arbitrary posterior probabilities", PAMI 27:1239-1253, 2005 |
opengm::SwendsenWangEmptyVisitor< SW > | Visitor |
opengm::SwendsenWangMarginalVisitor< SW > | Visitor |
opengm::SwendsenWangVerboseVisitor< SW > | Visitor |
trws_base::thresholdMulAndExp< T, ACC > | |
opengm::Timer | Platform-independent runtime measurements |
opengm::Timing< FUNCTOR > | Platform-independent runtime measurements of functors |
TransportSolver::TransportationSolver< OPTIMIZER, DenseMatrix > | |
opengm::TrbpUpdateRules< GM, ACC, BUFFER > | Update rules for the MessagePassing framework |
opengm::Tribool | Variable with three values (true=1, false=0, maybe=-1) |
opengm::TruncatedAbsoluteDifferenceFunction< T, I, L > | Truncated absolute differents between the labels of 2 variables |
opengm::TruncatedSquaredDifferenceFunction< T, I, L > | Truncated squared difference of the labels of two variables |
opengm::TRWSi< GM, ACC > | [class trwsi] TRWSi - tree-reweighted sequential message passing Based on the paper: V. Kolmogorov Convergent tree-reweighted message passing for energy minimization. IEEE Trans. on PAMI, 28(10):1568–1583, 2006 |
opengm::TRWSi_Parameter< GM > | |
trws_base::TRWSPrototype< SubSolver > | |
trws_base::TRWSPrototype_Parameters< ValueType > | |
unary_function | |
opengm::ValueFunctionProperties< ValueProperties::Maximum, FUNCTION > | |
opengm::ValueFunctionProperties< ValueProperties::Minimum, FUNCTION > | |
opengm::ValueFunctionProperties< ValueProperties::Product, FUNCTION > | |
opengm::ValueFunctionProperties< ValueProperties::Sum, FUNCTION > | |
opengm::ValueProperties | |
trws_base::VariableToFactorMapping< GM > | |
marray::Vector< T, A > | One-dimensional Marray |
marray::View< T, isConst, A > | Array-Interface to an interval of memory |
opengm::ViewConvertFunction< GM, ACC, VALUE_TYPE > | |
marray::ViewExpression< E, T > | |
opengm::ViewFixVariablesFunction< GM > | |
opengm::ViewFunction< GM > | Reference to a Factor of a GraphicalModel |
trws_base::VisitorWrapper< VISITOR, INFERENCE_TYPE > | |